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Abstract

The class of discontinuous Petrov-Galerkin finite element methods (DPG)
proposed by L. Demkowicz and J. Gopalakrishnan [4, 5] guarantees the opti-
mality of the solution in an energy norm and produces a symmetric positive
definite stiffness matrix, among other desirable properties. In this paper, we
describe a toolbox, implemented atop Sandia’s Trilinos library, for rapid devel-
opment of solvers for DPG methods. We use this toolbox to develop solvers for
the Poisson and Stokes problems.
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1 Introduction

Recently, L. Demkowicz and J. Gopalakrishnan have proposed a new class of discon-
tinuous Petrov-Galerkin (DPG) methods [4, 5, 6, 9, 3], which compute test functions
that are adapted to the problem of interest to produce stable discretization schemes.
An important choice that must be made in the application of the method is the defi-
nition of the inner product on the test space. In this paper, we describe a toolbox for
rapid development of solvers for DPG methods, implemented atop Sandia’s Trilinos
Project [7], using especially the Intrepid package of interoperable tools for compatible
discretizations [2]. We use our DPG toolbox to develop solvers for the Poisson and
Stokes problems.

Whereas traditional Galerkin methods use the same space for test and trial spaces,
Petrov-Galerkin methods allow the test and trial spaces to differ. The DPG approach
computes test functions that are optimal, in a sense that we make precise in Sec-
tion 2. One consequence of this choice of test functions is that the stiffness matrix
for a continuous, weakly coercive variational formulation is symmetric (hermitian, for
complex-valued problems) and positive definite. Of course, the determination of test
functions is an extra step compared with traditional methods; it is important that
these can be determined cheaply. By using discontinuous Galerkin (DG) formula-
tions, DPG achieves this, reducing the computation of the test functions to a local
problem. Our method bears some resemblance to the MDG method [8] in that a local
problem is solved on each element. The key difference with that paper is that in MDG
the local problem is restriction of the original equations whereas in DPG the local
problem is implied by the selected test space inner product. Furthermore, in MDG
the local problem is used to express DG degrees of freedom in terms of continuous
degrees of freedom, i.e., to effect static condensation on the element.

We have implemented a toolbox for solving PDEs using DPG. Our eventual goal is
to produce an hp-adaptive implementation of DPG which allows implementation of a
solver for a new variational formulation with minimal effort. Currently, p-refinements
are functional and the code is designed in anticipation of h-refinement, although hp-
adaptivity is not yet completed. The code supports both triangular and quadrilateral
elements of arbitrary order.

The paper is structured as follows. In Section 2, we give an introduction to the
basic features of the DPG method. In Section 3, we derive the weak formulation of
the Poisson problem. We describe two commonly used test space norms which the
code explicitly supports in Section 4. In Section 5, we give a brief overview of the
code. In Section 6 we give complete details on implementing the Poisson formulation
using our toolbox. We then discuss mesh generation and solving in Section 7. We
briefly discuss two Stokes formulations in Section 8. In Section 9 we present some
numerical results produced using the code. We conclude in Section 10.
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2 DPG Method

Here, we sketch some of the main features of the DPG method. For details, we refer
the reader to a series of papers by Demkowicz et al., in particular the second ICES
Report [5], from which most of this section is derived. We begin with theoretical defi-
nitions and results, and then describe the approach to practical realization. Consider
the abstract variational boundary-value problem:

Find u ∈ U : b(u, v) = l(v) ∀v ∈ V. (2.1)

We take U and V to be real Hilbert spaces. We assume b(·, ·) is continuous, i.e.

|b(u, v)| ≤M ||u||U ||v||V , (2.2)

for some real M . We assume also that b(·, ·) is weakly coercive, that is

inf
||u||U =1

sup
||v||V =1

b(u, v) > γ, (2.3)

for some γ > 0. If we additionally assume that

{v ∈ V : b(u, v) = 0 ∀u ∈ U} = {0}, (2.4)

then it is well known that the problem (2.1) has a unique solution provided that
l ∈ V ′, the dual of V .

2.1 Energy Norm

We define an alternate norm, called the energy norm, on the trial space U by

||u||E
def
= sup
||v||V =1

b(u, v). (2.5)

This norm is the one in which the optimality is guaranteed by the selection of optimal
test functions. It is an equivalent norm to the standard norm on U , i.e.

γ ||u||U ≤ ||u||E ≤M ||u||U ∀u ∈ U. (2.6)

2.2 Optimal Test Functions

We are now prepared to give a definition of the optimal test functions. Define a map
T : U → V from the trial space to the test space by: For u ∈ U , define Tu, the
optimal test function corresponding to u, as the unique solution to

(Tu, v)V = b(u, v) ∀v ∈ V.

10



By the Riesz representation theorem, T is well-defined. Note that

||u||E = sup
||v||V =1

b(u, v) = sup
||v||V =1

(Tu, v)V =
1

||Tu||V
(Tu, Tu)V = ||Tu||V .

Thus the energy norm is generated by the inner product on V , i.e.

(u, u)E
def
= (Tu, Tu)V . (2.7)

In practice, we approximate T by a discrete operator Tn, described in Section 2.4.

2.3 Optimal Test Space for Un

Take a finite-dimensional trial space Un ⊂ U . Define the optimal test space for Un as
Vn = span{Tej : j = 1, · · · , n}, where the ej form a basis for Un.

Solve the discrete problem

Find un ∈ Un : b(un, v) = l(v) ∀v ∈ Vn. (2.8)

Then the error is the best approximation error in the energy norm,

||u− un||E = inf
wn∈Un

||u− wn||E , (2.9)

and this is the sense in which the test space is optimal.

2.4 Practical Realization

The method involves two steps: first, find the optimal test functions; second, use the
optimal test functions to solve the discrete problem 2.8. The optimal test functions
are not in general polynomials. In practice, we approximate them with an “enriched”
polynomial space — a space of polynomials of slightly higher degree than the trial
space. This is done to provide a higher-fidelity approximation to the continuous
space of optimal test functions. The best choice for the amount of “enrichment” is
determined experimentally for each problem.

In general, we apply the following procedure:

1. Given a boundary value problem, develop mesh-dependent b(·, ·) with test
space V that allows inter-element discontinuities (hence Discontinuous Petrov-
Galerkin). We develop this in Section 8.

2. Choose trial space Un (in particular the norm of interest in Un), and the inner
product on V , which will be motivated by the choice of trial space.

11



3. Compute optimal test functions. Approximate T by Tn : Un → Ṽn ⊂ V . We
use an enriched space of piecewise polynomials for Ṽn. Defining tj = Tnej, we
solve

(tj, ẽi)V = b(ej, ẽi)

for tj, where the ẽi form the basis for Ṽn.

4. Use the optimal test functions to solve the problem on Un × Ṽn. We note
that the stiffness matrix here is symmetric positive definite (hermitian, for a
complex-valued problem),

b(ej, ti) = (Tnej, ti)V = (Tnej, Tnei)V = (Tnei, Tnej)V

= (Tnei, tj)V = b(ei, tj).

Also, note that this means that we may compute the stiffness matrix in terms of
the inner product on the test space V , without explicit recourse to the bilinear
form.

12



3 Poisson Formulation

Our general approach to variational formulations in DPG is as follows. First, rewrite
the strong form of the problem as a system of first-order partial differential equations.
Then, multiply by test functions and integrate by parts, moving all derivatives to the
test functions, introducing fluxes and traces wherever the trial space variables appear
in boundary integrals. We thus arrive at the ultra-weak form of the problem, a
formulation in which all solution variables are in L2.

We apply the DPG method to the Poisson problem in two dimensions:

∇ · ∇φ = f.

We define ψ = ∇φ and rewrite as a first-order system:

∇φ− ψ = 0

∇ · ψ = f.

Multiply by test functions and integrate:∫
K

∇φ · q−
∫

K

ψ · q = 0∫
K

∇ · ψ v =

∫
K

fv.

Integrate by parts, introducing flux ψ̂n and trace φ̂ on the boundary:

−
∫

K

φ∇ · q−
∫

K

ψ · q +

∫
∂K

φ̂ q · n = 0

−
∫

K

ψ · ∇v +

∫
∂K

ψ̂n v =

∫
K

fv .
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4 Two Standard Choices for Test Space Norm

In this section, we describe two commonly used norms on the test space — recall that
the choice of test space norm will determine the energy norm, and thus the sense in
which test functions are optimal. Our implementation makes usage of these norms
simple.

4.1 Mathematician’s Norm

In general, test functions in a variational form each belong to some functional space
on which a norm is already defined. Therefore, a mathematically natural choice for
a norm on the test space will be the Euclidean combination of these norms. In the
case of our Poisson formulation, q ∈ H(div) and v ∈ H(grad), so define

||(q, v)||2V
def
=

∫
Ω

(
(∇ · q)2 + q · q +∇v · ∇v + v2

)

as the mathematician’s norm on the test space.

4.2 Optimal and Quasi-Optimal Test Norms

We know from the analysis that DPG delivers the best solution in the energy norm,
and that the choice of norm on the test space determines the energy norm. We can
then ask whether it is possible to select the test space norm in such a way that the
energy norm is exactly the norm of interest (L2, in our case) — and the answer is
yes; this is given in the abstract setting by

||v||V
def
= sup
||u||U =1

b(u, v),

where ||·||U is the norm of interest. ||·||V is then called the optimal test norm. To
determine the optimal test norm, we can collect terms by trial space variable, and
then take the supremum using the Cauchy-Schwarz inequality. When we do so, we
will have some element boundary terms arising from the fluxes and traces. To make
the test norm localizable, we then replace these terms with L2 terms on the element
interior, often with some weight β. The resultant norm we call the quasi-optimal test
norm.

14



5 Code Overview

The directory layout in our code repository is as follows:

||-Drivers
||---DPGTests
||---MultiOrderStudy
||---Poisson
||---Stokes
||-SummerProceedings2011
||-build
||-presentation
||-src
||---Basis
||---ConvergenceStudy
||---DofOrdering
||---InnerProduct
||---Mesh
||---Problem
||---Solution
||---visualization

The core code is in the src directory. Within this, Basis contains classes re-
lated to basis functions. ConvergenceStudy contains the HConvergenceStudy
class, discussed below in Section 7.4, which provides support for studying conver-
gence rates. DofOrdering contains a utility class for maintaining the ordering of
coefficients related to the bases of interest. InnerProduct contains classes related
to implementation of the test-space inner product, discussed in detail in Section 6.5.
Mesh contains classes related to meshing and elements; Section 7.1 details mesh con-
struction. The Problem directory contains classes for the specification of the bilinear
form, right hand side, and boundary conditions, discussed in Sections 6.1, 6.2, and
6.3, respectively, using the Poisson problem as a motivating example. Solution
contains classes for solving such problems, as well as for the specification of exact
(manufactured) solutions; these are discussed in Sections 7.2 and 7.3. Finally, the
visualization directory contains a MATLAB script, discussed in Section 7.5, for
plotting solutions.

Several sample drivers can be found in the Drivers directory; DPGTests runs
a test suite against the core code, StokesStudy, StokesStudyHybridMesh and
PoissonStudy are drivers built with the HConvergenceStudy class, used to
produce the results in Section 9.

The SummerProceedings2011 directory contains the TeX source files, plots,
and raw data used used to produce this document. The presentation directory
contains a presentation covering much the same material.
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Finally, the build directory contains a makefile that can be used to build the
core code and the drivers.
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6 Poisson Implementation

We now detail the implementation of Poisson using the toolbox we have developed.
To specify a PDE to solve, we need to define the following:

• a bilinear form,

• a right-hand side, and

• boundary conditions.

Our DPG implementation is intended to make it simple to specify each of these,
once a first-order weak formulation has been derived.

6.1 Poisson Bilinear Form

Our bilinear form is given by

b(·, ·) =−
∫

K

φ∇ · q−
∫

K

ψ · q +

∫
∂K

φ̂ q · n

−
∫

K

ψ · ∇v +

∫
∂K

ψ̂n v .

Bilinear forms should subclass BilinearForm. This abstract class provides the
routines required for the rest of the toolbox to determine the optimal test functions,
produce the global stiffness matrix, and solve the system. The first step in sub-
classing is to populate two vector<int> structures provided by BilinearForm,
_trialIDs and _testIDs. These are simply integer identifiers that the subclass
uses for each of the trial and test variables. A typical approach is to define an enu-
meration for each of these in the subclass header file, and populate the vectors with
these in the subclass constructor.

In the Poisson formulation, we have:

• two test functions (q and v),

• one scalar trial “field” variable (φ),

• one vector trial “field” variable (ψ, which our implementation requires us to
split into scalars ψ1 and ψ2),

• one flux (ψ̂n),

• and one trace (φ̂).

17



Here is a snippet, defining the identifiers we wish to use for test and trial functions,
from PoissonBilinearForm.h:

enum ETestIDs {
Q_1 = 0,
V_1

};

enum ETrialIDs {
PHI_HAT = 0,
PSI_HAT_N,
PHI,
PSI_1,
PSI_2

};

The constructor for PoissonBilinearForm simply populates _trialIDs and
_testIDs with these enumeration values:

PoissonBilinearForm::PoissonBilinearForm() {
_testIDs.push_back(Q_1);
_testIDs.push_back(V_1);

_trialIDs.push_back(PHI_HAT);
_trialIDs.push_back(PSI_HAT_N);
_trialIDs.push_back(PHI);
_trialIDs.push_back(PSI_1);
_trialIDs.push_back(PSI_2);

}

BilinearForm also contains several virtual member functions that subclasses
must override:

1. const string & testName(int testID),

2. const string & trialName(int trialID),

3. EFunctionSpaceExtended
functionSpaceForTest(int testID),

4. EFunctionSpaceExtended
functionSpaceForTrial(int trialID),

5. bool isFluxOrTrace(int trialID),

6. either bool trialTestOperator(...), or
void trialTestOperators(...),

7. and one of the two forms of void applyBilinearFormData(...).

18



For testName() and trialName(), we recommend using LaTeX-compatible
strings, because BilinearForm can output a TeX-friendly string representation
of the bilinear form as implemented, a valuable debugging tool. Here is a snippet
defining these, from PoissonBilinearForm.cpp:

// trial variable names:
static const string & S_PHI = "\\phi";
static const string & S_PSI_1 = "\\psi_1";
static const string & S_PSI_2 = "\\psi_2";
static const string & S_PHI_HAT = "\\hat{\\phi}";
static const string & S_PSI_HAT_N ="\\hat{\\psi}_n";
static const string & S_DEFAULT_TRIAL = "invalid trial";

// test variable names:
static const string & S_Q_1 = "q_1";
static const string & S_V_1 = "v_1";
static const string & S_DEFAULT_TEST = "invalid test";

const string & PoissonBilinearForm::testName(int testID) {
switch (testID) {

case Q_1:
return S_Q_1;

break;
case V_1:

return S_V_1;
break;
default:

return S_DEFAULT_TEST;
} }

const string & PoissonBilinearForm::trialName(int trialID) {
switch(trialID) {

case PHI:
return S_PHI;

break;
case PSI_1:

return S_PSI_1;
break;
case PSI_2:

return S_PSI_2;
break;
case PHI_HAT:

return S_PHI_HAT;
break;
case PSI_HAT_N:

return S_PSI_HAT_N;
break;
default:

return S_DEFAULT_TRIAL;
} }

Next, we need to define the continuous spaces to which the test and trial func-
tions belong. These are defined by enumeration EFunctionSpaceExtended in

19



namespace IntrepidExtendedTypes (specified in BilinearForm.h); this mir-
rors names and values in IntrepidTypes::EFunctionSpace, with the intent
of adding spaces to support features such as local conservation. In general in DPG,
trial space functions will be in L2, with the exception of traces, which will be in H1.
The appropriate test space for a given test function is determined by the derivatives
applied to that test function — thus q ∈ H(div) and v ∈ H(grad). Here is the code
for the Poisson bilinear form:

EFunctionSpaceExtended
PoissonBilinearForm::functionSpaceForTrial(int trialID) {

// Field variables, and fluxes, are all L2.
if (trialID != PHI_HAT) {

return IntrepidExtendedTypes::FUNCTION_SPACE_HVOL;
} else {

return IntrepidExtendedTypes::FUNCTION_SPACE_HGRAD;
} }

EFunctionSpaceExtended
PoissonBilinearForm::functionSpaceForTest(int testID) {

switch (testID) {
case Q_1:
return IntrepidExtendedTypes::FUNCTION_SPACE_HDIV;

break;
case V_1:
return IntrepidExtendedTypes::FUNCTION_SPACE_HGRAD;

break;
default:
throw "Error: unknown testID";

} }

We also need to specify which of our trial variables are field variables and which
are fluxes or traces. This is accomplished by overriding isFluxOrTrace():

bool PoissonBilinearForm::isFluxOrTrace(int trialID) {
if ((PHI_HAT==trialID) || (PSI_HAT_N==trialID)) {

return true;
} else {

return false;
} }

We have now entirely defined the variables that enter the bilinear form. If we
now call BilinearForm’s printTestTrialInteractions() method, we get
the following output:

****** Interactions with test variable q_1 *******
\int_{\partial K} \hat{\phi} q_1 - \int_{K} \phi \nabla \cdot q_1
- \int_{K} \psi_1 \bf{i} \cdot q_1 - \int_{K} \psi_2 \bf{j} \cdot q_1

****** Interactions with test variable v_1 *******
\int_{\partial K} \hat{\psi}_n v_1
- \int_{K} \psi_1 \frac{\partial}{\partial x} v_1
- \int_{K} \psi_2 \frac{\partial}{\partial y} v_1
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Each of these lines can be pasted into a TeX document and rendered for compar-
ison with the intended bilinear form. Note that this method will only work approxi-
mately when material data varies in space, but for constant material data, it should
provide an exact representation of the bilinear form as implemented.

To complete the specification of the bilinear form, we need to define the way
that test and trial variables interact, as well as apply material data. The former is
specified in terms of operators that should be applied a test and trial pair. In most
simple bilinear forms, a given (test, trial) pair will appear only once. In this case, the
single-operator bool trialTestOperator() method may be used. The subclass
should return true if the pair appears in the bilinear form, and false otherwise. If
the pair does appear, then the subclass should set the test and trial operators passed
in. Note that because our approach splits the vector ψ into two scalars ψ1 and ψ2,
the ψ · ∇v term must be split into ψ1

∂
∂x
v + ψ2

∂
∂y
v. The code appears below.

bool PoissonBilinearForm::trialTestOperator(int trialID,
int testID,
EOperatorExtended &trialOperator,
EOperatorExtended &testOperator) {

// being DPG, trialOperator will always be OPERATOR_VALUE
trialOperator = IntrepidExtendedTypes::OPERATOR_VALUE;
// unless we specify otherwise,
// trial and test don’t interact:
bool returnValue = false;
switch (testID) {

case Q_1:
switch (trialID) {

case PSI_1:
returnValue = true;
// x component of q1 against psi1 (dot product):
testOperator = IntrepidExtendedTypes::OPERATOR_X;
break;

case PSI_2:
returnValue = true;
// y component of q1 against psi1 (dot product)
testOperator = IntrepidExtendedTypes::OPERATOR_Y;
break;

case PHI:
returnValue = true;
testOperator = IntrepidExtendedTypes::OPERATOR_DIV;
break;

case PHI_HAT:
returnValue = true;
testOperator = IntrepidExtendedTypes::OPERATOR_VALUE;
break;
default:

break;
}
break;

case V_1:
switch (trialID) {

case PSI_1:
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returnValue = true;
testOperator = IntrepidExtendedTypes::OPERATOR_DX;
break;

case PSI_2:
returnValue = true;
testOperator = IntrepidExtendedTypes::OPERATOR_DY;
break;

case PSI_HAT_N:
returnValue = true;
testOperator = IntrepidExtendedTypes::OPERATOR_VALUE;
break;
default:

break;
}

default:
break;

}
return returnValue;

}

The multi-operator version is similar, with multiple EOperatorExtended val-
ues being specified for each test and trial function.

We now specify the material data by overriding applyBilinearFormData;
there is a variant for both the multi- and single-operator implementations. This will
be called only for (test, trial) pairs that have non-zero interaction in the bilinear form.
The arguments to the single-argument variant of applyBilinearFormData are as
follows:

• int trialID: the trial variable identifier

• int testID: the test variable identifier

• FieldContainer<double> &testTrialValuesAtPoints:
values to which the material data should be applied

• FieldContainer<double> &points: the spatial points at which the ma-
terial data is applied

There is a static convenience function, multiplyFCByWeight() implemented
in BilinearForm, which simply multiplies all the values in an Intrepid FieldCon-
tainer by a given weight. This is convenient in a case like our Poisson problem, in
which the material data is constant.

void PoissonBilinearForm::applyBilinearFormData(int trialID,
int testID,
FieldContainer<double> &testTrialValuesAtPoints,
FieldContainer<double> &points) {

switch (testID) {
case Q_1:
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// - (phi, div q1)_K + (phi_hat, q_1n)_dK - (psi, q1)
switch (trialID) {

case PHI:
// negate
multiplyFCByWeight(testTrialValuesAtPoints,-1.0);

break;
case PSI_1:

// negate
multiplyFCByWeight(testTrialValuesAtPoints,-1.0);

break;
case PSI_2:

// negate
multiplyFCByWeight(testTrialValuesAtPoints,-1.0);

break;
case PHI_HAT:

// do nothing -- testTrialValuesAtPoints already
// has the right values

break;
}

break;
case V_1:

switch(trialID) {
// -(psi, grad v1)_K + (psi_hat_n, v1)_dK

case PHI:
throw "Error: no (v1, phi) term";

break;
case PSI_1:

// negate
multiplyFCByWeight(testTrialValuesAtPoints,-1.0);

break;
case PSI_2:

// negate
multiplyFCByWeight(testTrialValuesAtPoints,-1.0);

break;
case PSI_HAT_N:

// do nothing -- testTrialValuesAtPoints already
// has the right values
break;

}
break;

} }

6.2 Poisson Right-Hand Side

To specify the right hand side, we subclass RHS, overriding two functions:

1. bool nonZeroRHS(int testVarID), and

2. void rhs(int testVarID, FC &physicalPoints, FC &values).
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There are several versions of such implementations for Poisson. Below, we quote
from PoissonRHSCubic. A call to nonZeroRHS(int testVarID) should re-
turn true for any test variable which has a non-zero right-hand side. For Poisson,
the only such test variable is v; we integrate a function f against it. A call to
rhs(testVarID, physicalPoints, values) is responsible for providing the
values of the function f at points physicalPoints by populating values. Taking
an exact solution φ = x3 + 2y3, we have f = ∇ · ∇φ = 6x + 12y. Thus our subclass
implements the right hand side as follows:

bool PoissonRHSCubic::nonZeroRHS(int testVarID) {
if (testVarID == PoissonBilinearForm::Q_1) {

// the vector test function, zero RHS:
return false;

} else if (testVarID == PoissonBilinearForm::V_1) {
return true;

} else {
return false; // could throw an exception here

} }

void PoissonRHSCubic::rhs(int testVarID,
FieldContainer<double> &physicalPoints,
FieldContainer<double> &values) {

// for an exact solution of xˆ3 + 2yˆ3, f = 6x + 12y
int numCells = physicalPoints.dimension(0);
int numPoints = physicalPoints.dimension(1);
int spaceDim = physicalPoints.dimension(2);
if (testVarID == PoissonBilinearForm::V_1) {

values.resize(numCells,numPoints);
for (int cellIndex=0; cellIndex<numCells; cellIndex++) {
for (int ptIndex=0; ptIndex<numPoints; ptIndex++) {

double x = physicalPoints(cellIndex,ptIndex,0);
double y = physicalPoints(cellIndex,ptIndex,1);
values(cellIndex,ptIndex) = 6.0*x + 12.0*y;

} } } }

6.3 Poisson Boundary Conditions

Because we are interested the Poisson problem as a prototype for Stokes, we would
like to apply Dirichlet conditions to ψ, leaving φ to enter the original, strong form
of the equation only through a gradient, analogous to the way that pressure enters
the Stokes equations. In DPG, we apply boundary conditions through the fluxes and
traces, because these are the only variables formally defined on the boundary. Thus
a boundary condition ψ · n = g on ∂Ω becomes ψ̂n = g on ∂Ω. To make the problem
well-posed, we do need to pin down φ. Two ways of doing this are supported by the
code — first, a single point value can be imposed as a Dirichlet-like condition on a
field variable. This is a discrete trick that may bring some numerical difficulties such
as bad conditioning with it — such has been our experience. A second way to make
the problem well-posed is to impose a zero-mean condition on ψ. This carries with it

24



slightly more computational cost than the other approach, but has better numerical
properties. The implementation for the latter follows the procedure described in [1].

All the boundary conditions described above can be defined by subclassing the
BC class. The methods available for overriding are:

• bool bcsImposed(int varID):
specifies whether BCs are anywhere imposed for varID;

• void imposeBC(...):
requests imposition of BCs at boundary points;

• bool singlePointBC(int varID):
specifies whether to impose a single-point BC on a field variable;

• bool imposeZeroMeanConstraint(int varID):
specifies whether to impose a zero-mean constraint on a field variable.

The imposeBC() method takes arguments:

• int varID:
the variable for which BCs are requested;

• FieldContainer<double> &physicalPoints:
the points at which BCs might be imposed, dimensions are (C,P,D);

• FieldContainer<double> &unitNormals:
outward unit normals at the specified points, dimensions are (C,P,D);

• FieldContainer<double> &dirichletValues:
the values to impose at the specified points, dimensions are (C,P);

• FieldContainer<bool> &imposeHere:
whether to impose the BC at the specified point, dimensions are (C,P).

The final imposeHere argument allows boundary conditions to be specified only
along part of the boundary.

In the PoissonBCCubic class, we take the single-point option for the condition
on φ, and impose a Dirichlet condition everywhere along the boundary for ψ̂n. Since
φ = x3 + 2y3, ψ = ∇φ =

(
3x2

6y2

)
, so that ψ · n = 3x2n1 + 6y2n2; this is the value we

impose on ψ̂n. The code appears below, somewhat redacted, for space and clarity:

bool PoissonBCCubic::bcsImposed(int varID){
return varID == PoissonBilinearForm::PSI_HAT_N;

}
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bool PoissonBCCubic::singlePointBC(int varID) {
return varID == PoissonBilinearForm::PHI;

}

void PoissonBCCubic::imposeBC(int varID,
FieldContainer<double> &physicalPoints,
FieldContainer<double> &unitNormals,
FieldContainer<double> &dirichletValues,
FieldContainer<bool> &imposeHere) {

int numCells = physicalPoints.dimension(0);
int numPoints = physicalPoints.dimension(1);
int spaceDim = physicalPoints.dimension(2);

if (varID == PoissonBilinearForm::PHI) {
for (int cellIndex=0; cellIndex<numCells; cellIndex++) {
for (int ptIndex=0; ptIndex<numPoints; ptIndex++) {

double x = physicalPoints(cellIndex,ptIndex,0);
double y = physicalPoints(cellIndex,ptIndex,1);
dirichletValues(cellIndex,ptIndex) = x*x*x + 2.0*y*y*y;
// impose everywhere:
imposeHere(cellIndex,ptIndex) = true;

}
}

} else if (varID == PoissonBilinearForm::PSI_HAT_N) {
for (int cellIndex=0; cellIndex<numCells; cellIndex++) {
for (int ptIndex=0; ptIndex<numPoints; ptIndex++) {

// value = n1 * (3xˆ2) + n2 * (6yˆ2)
double x = physicalPoints(cellIndex,ptIndex,0);
double y = physicalPoints(cellIndex,ptIndex,1);
double n1 = unitNormals(cellIndex,ptIndex,0);
double n2 = unitNormals(cellIndex,ptIndex,1);
double value = (3.0*x*x)*n1 + (6.0*y*y)*n2;
dirichletValues(cellIndex,ptIndex) = value;
// impose everywhere:
imposeHere(cellIndex,ptIndex) = true;

} } } }

6.4 Manufactured Solutions

Using the Sacado package in Trilinos, it is possible to specify exact solutions and apply
automatic differentiation to these. This is an ideal way to implement a class of man-
ufactured solutions for a variational problem. While a detailed discussion of Sacado
is beyond the scope of this paper, there are two example manufactured solutions,
PoissonExactSolution and StokesManufacturedSolution, included with
the code. Each of these uses multiple inheritance to subclass RHS, BC, as well as
ExactSolution, an abstract class which provides solution values at a point, and
offers facilities for measuring the error in computed solutions.
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6.5 Test Space Inner Product Specification

In Section 4, we described two standard test norms, the mathematician’s norm and the
quasi-optimal test norm. We provide implementations in MathInnerProduct and
OptimalInnerProduct. The constructors for these simply take a BilinearForm
object as argument. The value of β in the quasi-optimal test norm is taken to be 1.

If a different test norm is desired, one can subclass DPGInnerProduct, and over-
ride the operators() and applyInnerProductData() methods. The interface
is very much like that for the BilinearForm. One limitation is worth mentioning: at
present, applyInnerProductData() receives only information about the physi-
cal points where the inner product is to be computed; some of our past research has
involved inner products that depend on the location relative to an element boundary
or the element’s size. Although these are relatively simple extensions, they are not
presently supported by the DPG Trilinos toolbox.
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7 Meshing and Solving

Once we have a bilinear form specified with a test space inner product, we are ready
to produce a mesh on which to solve the variational problem, and examine the error
of that solution. There are four classes provided to support this:

• Mesh: defines elements, vertices, and test and trial bases.

• ExactSolution: defines the exact solution values at a point.

• Solution: solves the linear system and stores solution coefficients.

• HConvergenceStudy: solves the variational problem on a series of meshes,
and computes convergence rates for trial space variables.

In this section, we discuss each of these in turn.

7.1 The Mesh Class

The Mesh class represents a bilinear form together with a set of quadrilaterals and
triangles on which polynomial bases are defined for each test and trial variable. The
basic Mesh constructor takes arguments

• vector<FieldContainer<double> > &vertices,

• vector< vector<int> > &elementVertices,

• Teuchos::RCP< BilinearForm > bilinearForm,

• int pTrial, and

• int pToAddTest.

The vertices vector has FieldContainer entries with dimensions (spaceDim),
the spatial dimension of the problem, each of which specifies the physical locations
of an element vertex. Each physical vertex should be listed exactly once. (We do
assume (spaceDim) = 2 in a few places in the code, so that is a limitation for the
moment.)

The elementVertices vector contains a vector of 3 or 4 vertex indices for each
element—these are the indices of the element’s vertices in the vertices vector, and
they should be specified in counterclockwise order (clockwise will work as well, but
all elements must be specified in the same order, clockwise or counterclockwise). The
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Mesh class will automatically determine which element edges lie along the boundary,
as well as which edges are shared between elements.

The bilinearForm argument is a reference-counted pointer to the bilinear form
for the variational problem to be solved.

pTrial is the polynomial order of approximation to be used for trial space vari-
ables belonging to H1 (that is, in function space FUNCTION_SPACE_HGRAD — typ-
ically, these are just the traces), and pToAddToTest is the polynomial order to add
to this to obtain the order for the test space. Trial space variables in L2 (function
space FUNCTION_SPACE_HVOL, typically field variables and fluxes), then these will
have order pTrial-1.

In addition to the basic mesh constructor, there are two static constructors to
build meshes within an axis-aligned rectangle. These are buildQuadMesh and
buildQuadMeshHybrid, with the following signatures:

Teuchos::RCP<Mesh> buildQuadMesh(
const FieldContainer<double> &quadBoundaryPoints,
int horizontalElements, int verticalElements,
Teuchos::RCP< BilinearForm > bilinearForm,
int pTrial, int pTest, bool triangulate=false);

Teuchos::RCP<Mesh> buildQuadMeshHybrid(
const FieldContainer<double> &quadBoundaryPoints,
int horizontalElements, int verticalElements,
Teuchos::RCP< BilinearForm > bilinearForm,
int pTrial, int pTest);

Both methods will construct a regularly spaced grid of horizontalElements ×
verticalElements rectangular elements, with pToAddTest = pTest - pTrial.
quadBoundaryPoints is a FieldContainer with dimensions (4,2) containing four
axis-aligned vertices. (We do hope to relax the axis-alignment constraint in the near
future.) In the first method, if triangulate is true, these rectangles are cut along
a diagonal to form triangular elements. In the second method, half of the elements
are split; the mesh is thus a “hybrid” of triangles and quads.

7.2 The ExactSolution Class

In order to measure the L2 error of a computed solution, we need to know what
the exact solution is. The ExactSolution class is a mechanism for defining this.
Subclasses should override the solutionValue() methods, which have signatures:

double solutionValue(int trialID,
FieldContainer<double> &physicalPoint);

double solutionValue(int trialID,
FieldContainer<double> &physicalPoint,
FieldContainer<double> &unitNormal);
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where unitNormal and physicalPoint are containers with dimension equal to
the spatial dimension (2, for the present). The unitNormal argument is provided
in the second method so that fluxes, which depend on the outward normal, may be
computed. As discussed above, the PoissonExactSolution class demonstrates
an implementation of ExactSolution using Sacado for automatic differentiation.

7.3 The Solution Class

A Solution object can be constructed and solved as follows:

Solution solution(mesh, bc, rhs, innerProduct);
solution.solve();

At present, the solve() method solves using the KLU implementation pro-
vided by Trilinos. The Solution class also provides support for computing solu-
tion values at points (through the solutionValues() methods), as well as out-
putting a data file representing the mesh solution for a given trial space variable (the
writeToFile() method).

7.4 The HConvergenceStudy Class

The HConvergenceStudy class provides a simple mechanism for studying conver-
gence rates on the meshes supported by the constructors buildQuadMesh() and
buildQuadMeshHybrid(). Its constructor interface is as follows:

HConvergenceStudy(Teuchos::RCP<ExactSolution> exactSolution,
Teuchos::RCP<BilinearForm> bilinearForm,
Teuchos::RCP<RHS> rhs,
Teuchos::RCP<BC> bc,
Teuchos::RCP<DPGInnerProduct> ip,
int minLogElements, int maxLogElements,
int H1Order, int pToAdd,
bool randomRefinements,
bool useTriangles, bool useHybrid)

The logarithms in minLogElements and maxLogElements are base 2, and the
number of elements is measured in one axis direction only — for example, specifying 0
and 5 will compute solutions for meshes varying in size from 1×1 to 32×32. H1Order
is the polynomial order for H1 space, which is one higher than that used for L2. The
randomRefinements flag will vary the H1Order throughout the mesh; these are
not actually randomly chosen — the flag is meant for exercising p-refinements. The
other arguments are self-explanatory.

Calling solve(quadBoundaryPoints), where the quadBoundaryPoints
argument is such as was used in buildQuadMesh(), will compute solutions on
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a series of meshes. Calling writeToFiles(filePathPrefix, trialID) will
print error values and convergence rates for trialID to console, and write both the
error values and the visualization data for the solution to a set of files starting with
filePathPrefix. Example drivers for HConvergenceStudy can be found in
PoissonStudy and StokesStudy.

7.5 Visualization

For visualization in MATLAB, first call the Solution object’s writeToFile()
method, passing in the trial variable identifier and the file path as arguments. Our
toolbox provides a MATLAB script, plotSolution.m, for displaying the solution.
Calling this is as simple as ensuring that the MATLAB script is in your MATLAB
path, and then calling plotSolution(filePath) from MATLAB. The visualiza-
tion is approximate: at present, we only write out solution values at vertices, and
MATLAB is responsible for interpolating between these. We do hope to provide
higher-fidelity visualization soon.
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8 Stokes Formulations

In Section 3, we developed an ultra-weak variational formulation for the Poisson
problem. In this section, we do the same for two formulations of the Stokes problem.

8.1 Stokes Formulation I: VSP Formulation

We begin with the formulation we have used in previous work, a velocity-stress-
pressure (VSP) formulation. Our past motivation for selecting this one over the
velocity-vorticity-pressure (VVP) formulation which we discuss below had to do with
details of implementation. The VVP formulation requires considerably fewer solution
variables, so now that we have it implemented, we prefer it.

The strong form of the Stokes problem with which we begin is as follows:

−2µ∇ · ε+∇p = f in Ω, (8.1)

∇ · u = 0 in Ω, (8.2)

u = gD on ∂Ω, (8.3)

where Ω ⊂ R2, µ is viscosity, ε = ∇symu is strain, p is pressure, u velocity, and f a
vector forcing function.

We introduce stress σ and vorticity ω by

σ = 2µε− pI

ω =
1

2
(∇u−∇uT )

so that equation (8.1) becomes simply −∇ · σ = f . We also have

ε =
1

2µ
(σ + pI).

Since ε = ∇symu = ∇u− ω, the entire system is

1

2µ
(σ + pI)−∇u+ ω = 0 in Ω,

−∇ · σ = f in Ω,

∇ · u = 0 in Ω,

u = gD on ∂Ω.
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Note that the antisymmetric part of the first equation recovers the definition of ω, so
that it need not enter the system separately. Define scalar ω = ω21 = 1

2
(u1,2 − u2,1).

Our strong formulation is

1

2µ

(
σ11 + p

σ21

)
−∇u1 +

(
0

ω

)
= 0 in Ω,

1

2µ

(
σ12

σ22 + p

)
−∇u2 −

(
ω

0

)
= 0 in Ω,

−∇ ·
(
σ11

σ21

)
= f1 in Ω,

−∇ ·
(
σ12

σ22

)
= f2 in Ω,

∇ · u = 0 in Ω,

u = gD on ∂Ω.

Multiplying the first two equations by vector test functions qi and the following three
by scalar test functions vi, and integrating by parts over an element K, we obtain

∫
K

(
1

2µ

(
σ11 + p

σ21

)
+

(
0

ω

))
· q1 +

∫
K

u1∇ · q1 −
∫

∂K

û1q1 · n = 0∫
K

(
1

2µ

(
σ12

σ22 + p

)
−
(
ω

0

))
· q2 +

∫
K

u2∇ · q2 −
∫

∂K

û2q2 · n = 0∫
K

(
σ11

σ21

)
· ∇v1 −

∫
∂K

σ̂1nv1 =

∫
K

f1v1∫
K

(
σ12

σ22

)
· ∇v2 −

∫
∂K

σ̂2nv2 =

∫
K

f2v2

−
∫

K

u · ∇v3 +

∫
∂K

ûv3 · n = 0,

where the hatted variables (û1, e.g.) are fluxes and traces introduced by relaxing
the continuity requirement at element boundaries. These differ from the numerical
fluxes that appear in other DG methods, in that they are not constructed a priori,
but simply enter the variational problem as additional unknowns. We solve for them
at the same time as we solve the rest of the unknowns. As in other DG methods,
the fluxes will approach the corresponding unhatted solution variables (which we call
field variables) as the latter approach the exact solution.

Conceptually, this requires nothing more than the Poisson formulation we de-
scribed above — in particular, the test functions qi ∈ H(div) and vi ∈ H(grad), so
we do not require any test spaces or operators different than discussed above. An
implementation of this bilinear form can be found in StokesBilinearForm.
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8.2 Stokes Formulation II: Velocity-Vorticity-Pressure For-
mulation

The standard velocity-vorticity-pressure (VVP) Stokes formulation is:

∇× ω +∇P = f

ω −∇× u = 0

∇ · u = 0.

(Note that the value of ω here differs by a factor of −1
2

from the ω as defined in
the previous formulation.) Multiplying by test functions, integrating by parts, and
substituting fluxes and traces for boundary values, we obtain:

∫
∂K

ω̂q ·
(
n2

−n1

)
+

∫
∂K

P̂ qn −
∫

K

ω∇× q −
∫

K

P∇ · q =

∫
K

f · q∫
∂K

û×nv1 −
∫

K

u · (∇× v1) +

∫
K

ωv1 = 0∫
∂K

ûnv2 −
∫

K

u · (∇v2) = 0 .

Whereas the original Stokes formulation required 7 field variables, 3 traces, and
2 fluxes, the VVP formulation requires just 4 field, 2 trace, and two flux vari-
ables. However, there are a few new operators and spaces required. While vi ∈
H(grad) as before, now we require q ∈ H(div) and q ∈ H(curl). We can sup-
port this by requiring q ∈ H(grad) × H(grad). In the code, we define the function
space for q as FUNCTION_SPACE_VECTOR_HGRAD. The curl operator is given by
OPERATOR_CURL, and the

·
(
n2

−n1

)
= ×n

operator is given by OPERATOR_CROSS_N. The implementation for this formulation
can be found in StokesVVPBilinearForm.
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9 Numerical Results

For each of our three formulations — Poisson, VSP Stokes, and VVP Stokes — we
have run a set of numerical experiments:

• For L2 polynomial orders 1, 2, and 3, run convergence studies on meshes varying
from 1× 1 to 32× 32.

• For a 16×16 mesh, vary the polynomial orders of the elements across the mesh.

• For L2 polynomial orders 1, 2, and 3, run convergence studies on “hybrid”
meshes (quads and triangles together) varying in size from 1× 1 to 32× 32.

The first two experiments we ran with triangles and quads. For all of the experi-
ments, we used the zero mean constraint and the domain (−1, 1) × (−1, 1), and the
mathematician’s inner product. We used the Poisson manufactured solution

φ = ex sin y − 1

4

∫ 1

−1

∫ 1

−1

ex sin ydxdy,

where the subtracted integral is chosen to ensure that φ does indeed have a zero mean.
Following our previous work, the Stokes experiments used a manufactured solution

u1 = −ex(y cos y + sin y)

u2 = exy sin y

p = 2µex sin y.

9.1 Convergence Studies on Uniform Meshes

For polynomial order k, we expect a convergence rate of k + 1. This is indeed what
we see in our experiments. The Poisson convergence studies with triangular elements
can be found in Table A.1; with quads, in Table A.2. The Stokes VSP studies with
triangles can be found in Table A.3; with quads, in Table A.4. The VVP studies with
triangles are shown in Table A.5; with quads, in Table A.6.

9.2 Meshes of Multiple Polynomial Orders

To confirm that our code works well with meshes that include elements of varying
degree, we took a 16× 16 mesh with L2 polynomial degree assigned according to the
following pattern, repeated 4 times:
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4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3
3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2
2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

We hope to see errors as good as, or better than, our first-order 16× 16 mesh for the
same problem, although we can perhaps explain a small amount of increased error as
due to worse conditioning of the matrices for higher-order polynomials.

The results for Poisson are:

Triangles
φ ψ1 ψ2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
2.0e-3 9.1e-4 3.4e-3 1.7e-3 2.4e-3 1.1e-3

Quads
φ ψ1 ψ2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
1.0e-3 3.7e-4 2.3e-3 6.6e-4 2.9e-3 1.2e-3

For Poisson, the multi-order mesh has lower error than the first-order mesh in every
variable, just as we would like.

The results for Stokes VSP are:

Triangles
p u1 u2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
1.6e-2 1.4e-2 5.1e-3 2.4e-3 4.4e-3 2.1e-3

Quads
p u1 u2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
5.3e-3 1.0e-2 4.9e-3 1.6e-3 2.5e-3 1.3e-3

For Stokes VSP, the multi-order mesh has lower error than the first-order mesh in
every variable, except for pressure in the quad mesh, where the first-order mesh does
better by about a factor of 2.

The results for Stokes VVP are:
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Triangles
p u1 u2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
6.9e-2 5.8e-2 6.9e-3 3.1e-3 6.8e-3 2.7e-3

Quads
p u1 u2

k = 1 mixed k k = 1 mixed k k = 1 mixed k
8.0e-3 2.1e-2 3.9e-3 1.7e-3 3.8e-3 1.4e-3

Again, the behavior is just as we would like, except in the case of pressure for quads,
where the error in the first-order mesh is better than that for the multi-order, this
time by a factor of about 2.5. We believe that this is due to round-off error, but we
do not at present have a precise explanation.

9.3 “Hybrid” Mesh Convergence Studies

We studied the convergence of the Poisson solution for “hybrid” meshes, containing
half triangles and half quads, ranging from 1×1 to 32×32, with L2 polynomial orders
k = 1, 2, 3. The results can be seen in Table B.1; again, the convergence rates for all
variables are optimal. Plots of φ, ψ1 and ψ2 for the 16 × 16 mesh can be found in
Figure C.1.

We studied the same for the VSP and VVP Stokes formulations. VSP results
can be found in Table B.2; VVP, Table B.3 — the rates are optimal for u1 and u2

across the board, but for reasons unknown the k = 1 VVP pressure is somewhat
sub-optimal, while for k = 2 and 3, the rate is somewhat super-optimal. Something
similar happens in the VSP pressure, although there the effect is considerably less
pronounced. Plots of P , u1 and u2 for the 16 × 16 mesh can be found in Figure
C.2. These were generated using the VVP formulation; the VSP plots are visually
identical.

37



10 Conclusions and Future Work

We have implemented a general toolbox for solving DPG problems, together with
proof-of-concept implementations of solvers for the Poisson and Stokes problems. We
look forward to extending this further. Here is a short list of features we would like
to add, and experiments we would like to perform, going forward:

• Quotient space norm computations — when we impose the pressure at a point
rather than imposing a zero-mean condition, the L2 norm of the error is not
the correct measure. We need to subtract off the mean value of both the exact
solution and that of the computed solution before taking the L2 norm of the
difference.

• Support for solving nonlinear problems using Newton-Raphson — in the end,
we hope to use this toolbox to solve the compressible Navier-Stokes equations
in two dimensions.

• p-adaptivity — we have p-refinements in place, so this is just a matter of com-
puting the error and refining where the error is highest.

• h-adaptivity — this will require us to add support for h-refinements. We have
a good idea how we will do so.

• Mesh-dependent inner products — at present, our inner products are computed
without any knowledge of element sizes; in some other DPG explorations, we
have used various kinds of weighted inner product, so we would like to support
these.

• Support for 1D computations. At present, only 2D is supported by the mesh,
but it should be a relatively simple matter to add support for 1D. 3D will be
more involved, but is tractable.

• MPI support. At present, the bulk of the computational cost in our numerical
experiments is devoted to computing the optimal test functions. Because these
are local computations, they should scale easily to many processors.
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A Results of Convergence Studies on Uniform

Meshes

k=1
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 4.2e-1 - 5.2e-1 - 3.4e-1 -
2 × 2 1.3e-1 1.71 2.0e-1 1.38 1.5e-1 1.24
4 × 4 3.2e-2 2.00 5.2e-2 1.93 3.9e-2 1.92
8 × 8 8.0e-3 2.01 1.3e-2 1.96 9.6e-3 2.00

16 × 16 2.0e-3 2.00 3.4e-3 1.99 2.4e-3 2.01
32 × 32 5.0e-4 2.00 8.4e-4 1.99 6.0e-4 2.00

k=2
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 7.9e-2 - 2.5e-1 - 1.4e-1 -
2 × 2 1.2e-2 2.77 3.1e-2 2.97 3.6e-2 1.96
4 × 4 1.4e-3 3.00 4.1e-3 2.95 4.9e-3 2.86
8 × 8 1.8e-4 2.99 5.1e-4 2.98 6.0e-4 3.02

16 × 16 2.3e-5 3.00 6.5e-5 2.99 7.5e-5 3.01
32 × 32 2.8e-6 3.00 8.1e-6 3.00 9.3e-6 3.01

k=3
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 2.5e-2 - 2.9e-2 - 4.3e-2 -
2 × 2 1.5e-3 3.99 3.4e-3 3.09 5.2e-3 3.06
4 × 4 1.1e-4 3.82 2.3e-4 3.92 3.4e-4 3.95
8 × 8 7.1e-6 3.94 1.5e-5 3.99 2.1e-5 3.98

16 × 16 4.5e-7 3.99 9.2e-7 3.99 1.3e-6 4.00
32 × 32 2.8e-8 4.00 5.8e-8 4.00 8.4e-8 4.00

Table A.1. Poisson: Triangles, L2 Error and h-
Convergence Rates. We observe optimal convergence.
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k=1
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 1.4e-1 - 5.4e-1 - 3.8e-1 -
2 × 2 5.2e-2 1.41 1.3e-1 2.00 1.4e-1 1.41
4 × 4 1.5e-2 1.77 3.5e-2 1.92 4.3e-2 1.70
8 × 8 4.1e-3 1.93 9.1e-3 1.97 1.2e-2 1.91

16 × 16 1.0e-3 1.98 2.3e-3 2.00 2.9e-3 1.98
32 × 32 2.6e-4 2.00 5.7e-4 2.00 7.3e-4 2.00

k=2
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 4.9e-2 - 8.5e-2 - 1.1e-1 -
2 × 2 6.6e-3 2.91 1.7e-2 2.34 1.6e-2 2.78
4 × 4 7.8e-4 3.08 2.2e-3 2.90 1.8e-3 3.12
8 × 8 9.3e-5 3.05 2.6e-4 3.11 2.0e-4 3.20

16 × 16 1.2e-5 3.01 3.1e-5 3.06 2.3e-5 3.11
32 × 32 1.4e-6 3.00 3.8e-6 3.03 2.8e-6 3.05

k=3
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 1.2e-2 - 3.0e-2 - 2.6e-2 -
2 × 2 6.6e-4 4.16 2.6e-3 3.54 2.0e-3 3.66
4 × 4 3.3e-5 4.33 1.2e-4 4.39 1.1e-4 4.18
8 × 8 2.1e-6 3.99 7.3e-6 4.09 6.6e-6 4.10

16 × 16 1.3e-7 3.99 4.4e-7 4.04 3.9e-7 4.07
32 × 32 8.1e-9 4.00 2.7e-8 4.02 2.4e-8 4.04

Table A.2. Poisson: Quads, L2 Error and h-Convergence
Rates. We observe optimal convergence.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 3.2e-0 - 9.4e-1 - 1.6e-0 -
2 × 2 1.1e-0 1.53 3.1e-1 1.62 2.8e-1 2.05
4 × 4 3.0e-1 1.89 8.0e-2 1.94 7.0e-2 1.99
8 × 8 6.9e-2 2.11 2.0e-2 1.99 1.8e-2 2.00

16 × 16 1.6e-2 2.12 5.1e-3 2.00 4.4e-3 2.00
32 × 32 3.8e-3 2.08 1.3e-3 2.00 1.1e-3 2.00

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 2.3e-0 - 2.6e-1 - 4.3e-1 -
2 × 2 2.8e-1 3.02 4.3e-2 2.63 5.1e-2 3.05
4 × 4 3.4e-2 3.06 5.8e-3 2.88 6.6e-3 2.97
8 × 8 4.0e-3 3.10 7.4e-4 2.97 8.3e-4 2.99

16 × 16 4.7e-4 3.06 9.3e-4 2.99 1.0e-4 3.00
32 × 32 5.8e-5 3.03 1.2e-5 3.00 1.3e-5 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 3.7e-1 - 5.0e-2 - 3.7e-2 -
2 × 2 3.4e-2 3.46 4.0e-3 3.66 3.4e-3 3.44
4 × 4 2.6e-3 3.70 2.6e-4 3.95 2.2e-4 3.94
8 × 8 1.9e-4 3.82 1.6e-5 3.99 1.4e-5 4.00

16 × 16 1.1e-5 4.06 1.0e-6 4.00 8.8e-7 4.00
32 × 32 5.8e-7 4.27 6.4e-8 4.00 5.5e-8 4.00

Table A.3. Stokes VSP: Triangles, L2 Error and h-
Convergence Rates. We observe optimal convergence.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 1.1e-0 - 4.7e-1 - 8.3e-1 -
2 × 2 6.1e-1 0.84 3.0e-1 0.65 1.7e-1 2.33
4 × 4 1.4e-1 2.07 7.8e-2 1.94 4.0e-2 2.03
8 × 8 2.9e-2 2.33 2.0e-2 1.99 1.0e-2 2.01

16 × 16 5.4e-3 2.41 4.9e-3 2.00 2.5e-3 2.00
32 × 32 1.0e-3 2.38 1.2e-3 2.00 6.3e-4 2.00

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 3.3e-1 - 3.0e-1 - 1.7e-1 -
2 × 2 1.8e-1 0.82 3.2e-2 3.22 2.0e-2 3.06
4 × 4 1.5e-2 3.67 3.9e-3 3.04 2.5e-3 3.02
8 × 8 1.2e-3 3.58 4.8e-4 3.01 3.1e-4 3.01

16 × 16 1.0e-4 3.54 6.0e-5 3.00 3.9e-5 3.00
32 × 32 9.5e-6 3.46 7.6e-6 3.00 4.9e-6 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 2.7e-1 - 1.3e-2 - 3.3e-2 -
2 × 2 2.0e-2 3.74 1.7e-3 2.91 1.8e-3 4.17
4 × 4 1.3e-3 4.02 1.1e-4 3.96 1.1e-4 4.05
8 × 8 7.0e-5 4.16 6.8e-6 3.99 6.9e-6 4.02

16 × 16 3.6e-6 4.29 4.3e-7 4.00 4.3e-7 4.00
32 × 32 1.6e-7 4.52 2.7e-8 4.00 2.7e-8 4.00

Table A.4. Stokes VSP: Quads, L2 Error and h-
Convergence Rates. We observe optimal convergence.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 3.0e-0 - 1.6e-0 - 2.0e-0 -
2 × 2 1.5e-0 1.00 4.9e-1 1.72 4.2e-1 2.23
4 × 4 6.4e-1 1.23 1.1e-1 2.14 1.1e-1 1.90
8 × 8 2.3e-1 1.51 2.8e-2 2.00 2.8e-2 2.02

16 × 16 6.9e-2 1.70 6.9e-3 2.00 6.8e-3 2.02
32 × 32 2.0e-2 1.77 1.7e-3 2.00 1.7e-3 2.01

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 2.1e-0 - 3.3e-1 - 4.6e-1 -
2 × 2 8.5e-2 4.65 5.5e-2 2.58 5.6e-2 3.04
4 × 4 8.3e-3 3.35 7.3e-3 2.90 7.7e-3 2.85
8 × 8 7.7e-4 3.44 9.3e-4 2.97 1.0e-3 2.96

16 × 16 6.8e-5 3.51 1.2e-4 2.99 1.3e-4 2.99
32 × 32 6.9e-6 3.30 1.5e-5 3.00 1.6e-5 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 1.7e-1 - 5.9e-2 - 5.4e-2 -
2 × 2 1.3e-2 3.74 4.4e-3 3.74 4.2e-3 3.68
4 × 4 8.9e-4 3.83 2.9e-4 3.93 2.7e-4 3.96
8 × 8 4.8e-5 4.22 1.8e-5 3.99 1.7e-5 3.99

16 × 16 2.0e-6 4.60 1.1e-6 4.00 1.1e-6 4.00
32 × 32 6.7e-8 4.89 7.2e-8 4.00 6.4e-8 4.00

Table A.5. Stokes VVP: Triangles, L2 Error and h-
Convergence Rates. We observe optimal convergence.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 1.5e-0 - 4.9e-1 - 1.5e-0 -
2 × 2 1.5e-0 0.02 3.6e-1 0.45 3.1e-1 2.26
4 × 4 1.0e-1 3.90 6.5e-2 2.45 6.3e-2 2.28
8 × 8 3.0e-2 1.74 1.6e-2 2.05 1.5e-2 2.04

16 × 16 8.0e-3 1.91 3.9e-3 2.01 3.8e-3 2.01
32 × 32 2.0e-3 1.97 9.8e-4 2.00 9.6e-4 2.00

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 2.1e-0 - 3.9e-1 - 2.7e-1 -
2 × 2 5.1e-2 5.33 3.3e-2 3.56 2.2e-2 3.60
4 × 4 3.7e-3 3.80 3.9e-3 3.07 2.6e-3 3.06
8 × 8 3.5e-4 3.41 4.9e-4 3.02 3.3e-4 3.01

16 × 16 3.8e-5 3.18 6.1e-5 3.00 4.1e-5 3.00
32 × 32 4.4e-6 3.12 7.6e-6 3.00 5.1e-6 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 1.9e-1 - 1.3e-2 - 3.7e-2 -
2 × 2 1.3e-2 3.82 1.8e-3 2.85 2.0e-3 4.23
4 × 4 4.7e-4 4.83 1.1e-4 3.97 1.1e-4 4.11
8 × 8 1.9e-5 4.59 7.1e-6 4.00 7.1e-6 4.02

16 × 16 1.0e-6 4.24 4.4e-7 4.00 4.4e-7 4.00
32 × 32 6.3e-8 4.04 2.8e-8 4.00 2.8e-8 4.00

Table A.6. Stokes VVP: Quads, L2 Error and h-
Convergence Rates. We observe optimal convergence.

45



B Results of Convergence Studies on Hybrid

Meshes

k=1
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 4.2e-1 - 5.2e-1 - 3.4e-1 -
2 × 2 9.6e-2 2.12 1.7e-1 1.58 1.4e-1 1.27
4 × 4 2.4e-2 1.99 4.5e-2 1.93 4.0e-2 1.84
8 × 8 6.1e-3 2.00 1.2e-2 1.97 1.0e-2 1.96

16 × 16 1.5e-3 2.00 2.9e-3 1.99 2.6e-3 1.99
32 × 32 3.8e-4 2.00 7.3e-4 2.00 6.4e-4 2.00

k=2
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 7.9e-2 - 2.5e-1 - 1.4e-1 -
2 × 2 9.5e-3 3.06 2.5e-2 3.29 2.8e-2 2.33
4 × 4 1.2e-3 3.03 3.3e-3 2.94 3.7e-3 2.90
8 × 8 1.4e-4 3.01 4.1e-4 3.01 4.5e-4 3.04

16 × 16 1.8e-5 3.00 5.1e-5 3.01 5.5e-5 3.02
32 × 32 2.3e-6 3.00 6.3e-6 3.00 6.9e-6 3.01

k=3
Mesh Size φ rate ψ1 rate ψ2 rate

1 × 1 2.5e-2 - 2.9e-2 - 4.3e-2 -
2 × 2 1.2e-3 4.37 3.0e-3 3.27 4.0e-3 3.45
4 × 4 8.1e-5 3.88 1.8e-4 4.05 2.5e-4 3.98
8 × 8 5.2e-6 3.95 1.2e-5 3.99 1.6e-5 3.99

16 × 16 3.3e-7 3.99 7.2e-7 4.00 9.9e-7 4.00
32 × 32 2.1e-8 4.00 4.4e-8 4.00 6.2e-8 4.00

Table B.1. Poisson: “Hybrid” Mesh, L2 Error and h-
Convergence Rates. We observe optimal convergence.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 3.2e-0 - 9.4e-1 - 1.2e-0 -
2 × 2 1.1e-0 1.58 3.1e-1 1.62 2.7e-1 2.10
4 × 4 2.9e-1 1.88 8.0e-2 1.94 6.8e-2 1.99
8 × 8 6.7e-2 2.12 2.0e-2 1.99 1.7e-2 2.00

16 × 16 1.5e-2 2.14 5.0e-3 2.00 4.2e-3 2.00
32 × 32 3.6e-3 2.09 1.3e-3 2.00 1.1e-3 2.00

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 2.3e-0 - 2.6e-1 - 4.3e-1 -
2 × 2 2.8e-1 3.02 4.1e-2 2.67 4.9e-2 3.12
4 × 4 3.2e-2 3.13 5.6e-3 2.89 6.3e-3 2.98
8 × 8 3.8e-3 3.11 7.1e-4 2.97 7.9e-4 2.99

16 × 16 4.5e-4 3.07 9.0e-6 2.99 9.9e-5 3.00
32 × 32 5.5e-5 3.03 1.1e-5 3.00 1.2e-5 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 3.7e-1 - 5.0e-2 - 3.7e-2 -
2 × 2 3.3e-2 3.51 3.8e-3 3.73 3.3e-3 3.50
4 × 4 2.5e-3 3.69 2.5e-4 3.95 2.1e-4 3.94
8 × 8 1.8e-4 3.80 1.6e-5 3.99 1.3e-5 4.00

16 × 16 1.1e-5 4.06 9.7e-7 4.00 8.4e-7 4.00
32 × 32 5.5e-7 4.30 6.1e-8 4.00 5.2e-8 4.00

Table B.2. Stokes VSP: “Hybrid” Mesh, L2 Error and
h-Convergence Rates. Rates are close to optimal.
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k=1
Mesh Size p rate u1 rate u2 rate

1 × 1 3.0e-0 - 1.6e-0 - 2.0e-0 -
2 × 2 1.2e-0 1.30 4.6e-1 1.80 4.1e-1 2.25
4 × 4 6.2e-1 0.97 1.1e-1 2.12 1.1e-1 1.93
8 × 8 2.2e-1 1.48 2.7e-2 1.99 2.7e-2 2.03

16 × 16 6.9e-2 1.70 6.6e-3 2.00 6.6e-3 2.02
32 × 32 2.0e-2 1.77 1.7e-3 2.00 1.6e-3 2.01

k=2
Mesh Size p rate u1 rate u2 rate

1 × 1 2.1e-0 - 3.3e-1 - 4.6e-1 -
2 × 2 8.8e-2 4.60 5.2e-2 2.64 5.3e-2 3.12
4 × 4 8.6e-3 3.35 7.0e-3 2.91 7.3e-3 2.85
8 × 8 7.7e-4 3.48 8.9e-4 2.98 9.4e-4 2.96

16 × 16 6.7e-5 3.53 1.1e-4 2.99 1.2e-4 2.99
32 × 32 6.7e-6 3.32 1.4e-5 3.00 1.5e-5 3.00

k=3
Mesh Size p rate u1 rate u2 rate

1 × 1 1.7e-1 - 5.9e-2 - 5.4e-2 -
2 × 2 1.3e-2 3.74 4.2e-3 3.81 4.0e-3 3.75
4 × 4 8.9e-4 3.83 2.8e-4 3.93 2.6e-4 3.97
8 × 8 4.8e-5 4.22 1.7e-5 3.99 1.6e-5 4.00

16 × 16 2.0e-6 4.59 1.1e-6 4.00 1.0e-6 4.00
32 × 32 6.7e-8 4.89 6.8e-8 4.00 6.3e-8 4.00

Table B.3. Stokes VVP: “Hybrid” Mesh, L2 Error and
h-Convergence Rates. Rates are close to optimal.
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C Solution Plots
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Figure C.1. Solution of Poisson with quads and triangles
(cubic elements, 16 × 16 mesh): φ (top pane), ψ1 (middle
pane) ψ2 (bottom pane).
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Figure C.2. Solution of Stokes (VVP) with quads and
triangles (cubic elements, 16 × 16 mesh): P (top pane), u1

(middle pane), u2 (bottom pane).
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